AL-USTATH No214 -volume Two-2015AD,1436 AH

A novel modeling domain application
Dr. Buthainah F. AL-Dulaimi,

College of Education for Women/University of Baghdad
Buthynna@yahoo.com

Abstract:

This paper presents a novel to model application domain. Application domain
description precedes requirements engineering, and is the basis for the development of a
software or information system that satisfies all expectations of its users. The domain
model is used to generate project specific process models. Our aim is to develop a
model description for processes which permits to create comprehensive scenarios.
Modeling can be divided into a structural, and behavioral. This paper projects that an
important future direction in software engineering is domain-specific software
engineering. From requirements specification to design, and then implementation, a
tighter coupling between the descriptions of a software system with its application
domain has the potential to improve both the correctness and reliability of the software
system. The greatest challenge in this area is the evolution of the application domain
itself. We show how the application domain description can be mapped to requirements
and discuss engineering of application domain descriptions.

Key words: Software Modeling, Domain Modeling, Domain-specific modeling,
Software process models, Design modeling, Process models.

1 Introduction

This research deals with an important issue in computer world. It is
concerned with the software management processes as in figure 1 that
examine the area of software development through the development
models.

— System Changes .

Systems
Engineering
Harmony-SE

Requirements Test Scenarios
Analysis

System
Analysis & Design

(Sub-)System
Integration & Test :

System Architecture
Baseline

Model | Requirements Repository

sSwW
Analysis & Design

Module
Integration & Test

Software
Engineering
Harmony-SWE

SW Implementation

& Unit Test

Fig. 1 the software process

mailto:Buthynna@yahoo.com

AL-USTATH No214 -volume Two-2015AD,1436 AH

A software process model as in figure 2 is an abstract representation
of a process. It presents a description of a process from some
particular perspective as: specification, design, validation, evolution
[1]. Software development is hard, requiring both domain knowledge
and expertise. Some future directions are: mining domain concepts
from existing application code written in general-purpose languages,
using other artifacts where domain analysis has been performed
already and presented in different forms [2]. Generic process models:
Waterfall; Iterative development; Component-based software
engineering [1].

Design inputs

| Platform | Requireme: nts |

[Data
| information specification i

‘ description

* Design activities

Architectural { Interface [Component
design ; \ design design

| Database design
¢ Design outputs

System | Database Interface Component |
architecture specification speafication specification

Fig. 2 Software process model

Moreover, results from domain analysis must be well-integrated with
the design process. To build a large software system from a collection of
components as in figure 3, and that components do not inherently carry
enough information in their deployment to facilitate their composition [3].
Based on systematic reuse where systems are integrated from existing
components or COTS (Commercial-off-the-shelf) systems. Process stages
are: Component analysis; Requirements modification; System design with
reuse; Development and integration. This approach is becoming
increasingly used as component standards have emerged [1].

Therefore successful composition relies on two cross-cutting
domains: application domain and technology domain. Application domain
knowledge imparts what components would naturally compose with other
components to build the application system. Technology domain
knowledge provides the technical infrastructure on how the components
should be composed, including generation of code. The impact of domain-
specific software engineering on building such systems is that domain
knowledge is an inherent part of software systems, including components.
This domain knowledge may be used to facilitate composition as well as

AL-USTATH No214 -volume Two-2015AD,1436 AH

reasoning about the composition with respect to correctness, reliability and
various other quality measures (e.g., security) [3].

Outline ! Search for \
system J reusable
rcquircmcnts componcnts

‘ Search for \
Architectural Y \
. reusable
design / /

4‘/ components ‘4/

Fig. 3. Component based system model

Mo dify requirem ents\
according to
discovered

components

Specify system
components
based on reusable |
components

2. Domain Model

A Domain Model is an analysis model for the application domain
that is needed to implement the application. An application domain is
represented by means of multiple views, such that each view presents a
different aspect of the domain [4]. It is well-known that requirements
engineering cannot be conducted effectively without domain engineering.
Domain-specific requirements specification requires that there be a
framework for expressing domain entities at the specification level [5].
Providing requirements specification in terms of domain abstractions will
also make such specifications easier for domain experts who are not
software engineers to validate, because the specification will be expressed
in terms of concepts which they understand. Software engineers may then
concentrate on the formal specifications needed to model the appropriate
domain behavior. DSM (Domain-specific modeling) has enabled both end-
users and software developers in describing the key characteristics of a
system from the perspective of the problem space, without getting
overwhelmed by the accidental complexities of the solution space. By
providing a notation that is often visual and graphical in nature, while also
matching the abstractions of the domain, the essence of the problem can be
captured in a way that removes the coupling with implementation concerns.
Model transformations are used to translate a source model into some other
form [6]. It is clear that we need a paradigm shift in software development
to manage the complexity of development and maintenance. The same
system functionality must be achieved with less code, which is also often
easier to validate and maintain. Modifications to domain-specific programs
are easier to create and can be understood and validated by domain experts
who do not know how to program in a general-purpose language [7] [8].

AL-USTATH No214 -volume Two-2015AD,1436 AH

3. Domain engineering

Domain engineering is designed to improve the quality of developed
software products through reuse of software artifacts. Domain engineering
shows that most developed software systems are not new systems but rather
variants of other systems within the same field. Domain engineering
focuses on capturing knowledge gathered during the software
engineering process. By developing reusable artifacts, components can be
reused in new software systems at low cost and high quality. Because this
applies to all phases of the software development cycle, domain
engineering also focuses on the three primary phases: analysis, design, and
implementation, paralleling application engineering. This produces not
only a set of software implementation components relevant to the domain,
but also reusable and configurable requirements and designs.

3.1 Domain analysis

Domain analysis is used to define the domain, collect information
about the domain, and produce a domain model. Domain analysis aims to
identify the common points in a domain and the varying points in the
domain. Domain analysis is derived primarily from artifacts produced past
experience in the domain. Existing systems, their artifacts and customers
are all potential sources of domain analysis input. During the domain
analysis process, engineers aim to extend knowledge of the domain beyond
what is already known and to categorize the domain into similarities and
differences to enhance reconfigurability. Domain analysis primarily
produces a domain model, representing the common and varying properties
of systems within the domain. The domain model assists with the creation
of architectures and components in a configurable manner by acting as a
foundation upon which to design these components. An effective domain
model not only includes the varying and consistent features in a domain,
but also defines the vocabulary used in the domain and defines concepts,
ideas and phenomena, within the system. Feature models decompose
concepts into their required and optional features to produce a fully
formalized set of configurable requirements.

3.2 Domain design

Domain design takes the domain model produced during the domain
analysis phase and aims to produce a generic architecture to which all
systems within the domain can conform. In the same way that application
engineering uses the functional and non-functional requirements to produce
a design; the domain design phase of domain engineering takes the
configurable requirements developed during the domain analysis phase and
produces a configurable, standardized solution for the family of systems.

AL-USTATH No214 -volume Two-2015AD,1436 AH

Domain design aims to produce architectural patterns which solve a
problem common across the systems within the domain, despite differing
requirement configurations. In addition to the development of patterns
during domain design, engineers must also take care to identify the scope
of the pattern and the level to which context is relevant to the pattern.
Limitation of context is crucial: too much context results in the pattern not
being applicable to many systems, and too little context results in the
pattern being insufficiently powerful to be useful. A useful pattern must be
both frequently recurring and of high quality. The objective of domain
design is to satisfy as many domain requirements as possible while
retaining the flexibility offered by the developed feature model. The
architecture should be sufficiently flexible to satisfy all of the systems
within the domain while rigid enough to provide a solid framework upon
which to base the solution.

3.3 Domain implementation

Domain implementation is the creation of a process and tools for
efficiently generating a customized program in the domain [9] [10].

4. The proposed model

The complete proposed model can be summarized as illustrated in
figure 4. For the purpose of understandings, the model might be simply
divided into several stages, namely analysis stage, design stage and
implementation stage, as described below.

a. The analysis stage comprises of three phases; problem phase,
conceptual phase and requirement phase. This stage is concerned with
examination of the problem domain and usage domain producing an
object oriented model that determines functional and non-functional
system requirements including hardware and software components
requirements. Besides, it specifies a behavior model and a framework
for the object oriented design stage. During analysis stage, the user and
the developer closely cooperate in order to construct the model. The
process is controlled by a system definition, delimitation, modeling and
evaluation with the customer verification. It is iterative process and
only stops when the user and the developer agree that the descriptions
are usable and express a common understanding.

b. The design stage is concerned with specifying the overall structure of
the system, resulting mainly into object oriented system model.
Besides, the developer refines the object model and introduces an
architecture model in order to understand the system model. Functional
and non-functional requirements are supported at this stage and system
model is mapped onto logical platform. At the design level, software
domain is considered including either partial or complete software

AL-USTATH No214 -volume Two-2015AD,1436 AH

descriptions. The system model is constructed from the object model.
The behavior model, together with the functional requirements,
supplies the information for performing the functionality to the object
model. Constructive solution for how the non-functional requirements
and the organization of the logical platform combined with object
model and system model to produce the architecture model which starts
with identification then performs classification of components into
classes.

c. Implementation stage is concerned with the realization of the system
model. The structure captured by the design must be implemented in
certain programming language. In the implementation stage, the
developer integrates the architectural model into this program during
the process and transforms the system model into a refined model in the
form of programs and configurations. Hence, the perspective on the
platform becomes a physical perspective during the implementation.
This stage involves software domain, physical platform and object-
oriented programming language. The model of the implementation
process includes an iterative cycle, where the program is constructed
from the system and architecture models under the influence of relevant
non-functional requirements and the physical platform. During
implementation stage, programming techniques are available for the
developer in order to build the programs. Hence, the structure and the
interactions described by the architectural design must be implemented
in a programming language, therefore it allows for system execution
which is the target platform.

Evaluation

User

Object
Model

Behaviour
Model

Defining

Conceptual
System
Problem Definition & Phase e —
Phase Analysis
Analysis
Developer
Evolution

S —— Documentation
. & Maintenance
OO Design System
Model I | tati
Stage Implementind mplementation
Stage
Avrchitectural 9
Model
Testing Programs _&
: & Configuration
Developing Developer . .
f \Validating

Fig. 4 The proposed domain model

AL-USTATH No214 -volume Two-2015AD,1436 AH

5. Conclusions

The aim of software engineering is to create a suitable work that
constructs programs of high quality. Our position for this paper is focused
on the role that domain specific software engineering plays with respect to
requirements specification, modeling and implementation. The proposed
model is based on "real world" entities or objects. To reduce cost, the
model is iterative and influenced by task analysis, user interface design. It
iIs planned to evolve into system model and architecture model. An
important part of our model is the inclusion of analysis and evaluation
activities as part of architecture design that meets stakeholder's goals or
concerns. A good domain model serves as a reference to resolve
ambiguities later in the software process, a repository of knowledge about
the domain characteristics and definition, and a specification to developers
of products which are part of the domain.

References:

1. lan Sommerville, "Software Engineering”, Addison Wesley, 7th edition, 2004

2. Mernik, M., Hrn¢i¢, D., Bryant, B. R., and Javed, F. 2010. Applications of GI in
software engineering: DSL development. In Mathematics, Computing,
Language, and Life: Frontiers in Mathematical Linguistics and Language
Theory, C. Martin-Vide, Ed. Imperial College Press, London.

3. Cao, F., Gray, J.,, and Bryant, B. R. 2009. Component-based software
engineering. In Wiley Encyclopedia of Computer Science and Computer
Engineering, B. Wah, Ed. John Wiley & Sons, Inc., Hoboken, NJ.

4. Ehrig, H., K . Ehrig, C. Ermel, F. Hermann and G. Taentzer. 2007. “Information
Preserving Bidirectional Model Transformations.” In: Fundamental Approaches
to Software Engineering, edited by M. Dwyer and A. Lopes

5. Bjgrner, D. 2010. Domain engineering. In Formal Methods; State of the Art and
New Directions, P. Boca, J. P. Bowen, and J. I. Siddiqi, Eds. Springer-Verlag,
London, 1-41. DOI=http://dx.doi.org/10.1007/978-1-84882-736-3_1.

6. Kelly, S. and Tolvanen, J.-P. 2008. Domain-Specific Modeling: Enabling Full-
Code Generation. Wiley-IEEE Computer Society Press, Hoboken, NJ.

7. Harrison W. 2004. The dangers of end-user programming, IEEE Software 21, 4
(July/Aug. 2004), 5-7. DOI= http://dx.doi.org/10.1109/MS.2004.13.

8. Sutcliffe, A. and Mehandjiev, N. 2004. End-User Development: Tools that
Empower Users to Create their Own Software Solutions, Commun. ACM 47, 9
(Sept. 2004), 31-32. DOI= http://doi.acm.org/10.1145/1015864.1015883.

9. Harsu, Maarit (December 2002). A Survey on Domain Engineering (Report)
(Report 31). Institute of Software Systems, Tampere University of Technology.
p. 26. ISBN 9789521509322.

10. Reinhartz-Berger, Iris; Sturm, Arnon; Clark, Tony; Cohen, Sholom; Bettin, Jorn
(2013). Domain Engineering: Product Lines, Languages, and Conceptual
Models. Springer Science+Business Media.lISBN 978-3-642-36654-3.

http://dx.doi.org/10.1109/MS.2004.13
http://doi.acm.org/10.1145/1015864.1015883
http://practise2.cs.tut.fi/pub/papers/domeng.pdf
http://en.wikipedia.org/wiki/Tampere_University_of_Technology
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/9789521509322
http://en.wikipedia.org/wiki/Springer_Science%2BBusiness_Media
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-3-642-36654-3

AL-USTATH No214 -volume Two-2015AD,1436 AH

Gdail) Jlaa Sl 3l
i) lgd Ay Laal
liall A al) &S /2 2k drala
buthynna@yahoo.com
Awdid Gay Gulill Jlaw Chay Gkl Jlae Sl zased Ayl bda (s
IS G8lsis Jaall GalaY) 05S5 Clasbeall sl) alin skl (ulu) say ccbillaial
oo LB Lo phall Badaa Ao zalad Al Jlaall Z3ga alasin) & L lgpeadinad Cilad gl
A Aadall s (Says ALl Cilagylan (Sl mant Al Glileall Lad gai lhiay sk
shs Gyl duaia A agall il oladV) i o S Al s3a L ASskally IS
@33 sAly 288l &5 e aranaill & Gkl Chay (o Dby Jlaad Jiadll (anads
Jlae sk sa Jlaall 138 8 SV ool . Cilimasdl d85ises Aaa (o JS (puand)
kil Jlae Gliay colillaie duiag Caay ot S caS W iy caudi Gudail)

